Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of elevated temperatures on the performance of an InP cell illuminated by a selective emitter

Identifieur interne : 014220 ( Main/Repository ); précédent : 014219; suivant : 014221

Effect of elevated temperatures on the performance of an InP cell illuminated by a selective emitter

Auteurs : RBID : Pascal:99-0281852

Descripteurs français

English descriptors

Abstract

The thermophotovoltaic (TPV) option was not selected for further deep space mission technology development in NASA for several reasons. Chief among them was the large radiator required to keep the photovoltaic cells at a sufficiently low operating temperature. This led to significant integration problems with the spacecraft and limited sensor view angles. It is clear that the issue of cell temperature is crucial for space applications because of radiator size and system impact. Many efforts have focused on matching cell band gap to appropriate emitters in the 1 to 2 μm range, resulting in band gaps in the 0.5 to 0.8 eV range. However, low band gaps lead to low open circuit voltages (∼0.25 to 0.45 V) caused by high intrinsic carrier concentrations (ni2). Thus, in order to obtain high performance. Photovoltaic cell temperatures must be kept near room temperature. This leads to the inevitable consequence of very large radiators for space applications. Thus in order to make the TPV system suitable for space, this temperature problem must be resolved. However, by turning the problem around and assuming that the system must have an operating temperature in the 150 to 225°C range, new opportunities for solution arise. If one selects a cell with a wider band gap, open circuit voltage will be larger and the temperature coefficient of voltage will generally be somewhat lower percentage wise. Thus voltages higher than typical low band gap cells are possible even at these higher temperatures. In this paper, InP is selected to demonstrate this concept because it is a well-researched cell, it has a direct band gap and its various temperature coefficients are known. Response of InP cell at the temperature range of 28°C to 225°C is investigated under Yb2O3 emitter illumination. The variation of the open circuit voltage and band gap with temperature are also discussed in the paper. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0281852

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of elevated temperatures on the performance of an InP cell illuminated by a selective emitter</title>
<author>
<name sortKey="Chen, Zheng" uniqKey="Chen Z">Zheng Chen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Space Power Institute, 231 Leach Center Auburn, Alabama 36849</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Space Power Institute, 231 Leach Center Auburn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brandhorst, Henry W" uniqKey="Brandhorst H">Henry W. Brandhorst</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Space Power Institute, 231 Leach Center Auburn, Alabama 36849</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Space Power Institute, 231 Leach Center Auburn</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0281852</idno>
<date when="1999-03-10">1999-03-10</date>
<idno type="stanalyst">PASCAL 99-0281852 AIP</idno>
<idno type="RBID">Pascal:99-0281852</idno>
<idno type="wicri:Area/Main/Corpus">014F41</idno>
<idno type="wicri:Area/Main/Repository">014220</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0094-243X</idno>
<title level="j" type="abbreviated">AIP conf. proc.</title>
<title level="j" type="main">AIP conference proceedings</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Direct energy conversion</term>
<term>Emissivity</term>
<term>Experimental study</term>
<term>Feasibility studies</term>
<term>High-temperature effects</term>
<term>Indium compounds</term>
<term>Indium phosphides</term>
<term>Narrow band gap semiconductors</term>
<term>Performance</term>
<term>Performance evaluation</term>
<term>Phosphorus compounds</term>
<term>Quantum efficiency</term>
<term>Space research</term>
<term>Space vehicles</term>
<term>Thermophotovoltaic converters</term>
<term>thermophotovoltaic cells</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8460B</term>
<term>8460J</term>
<term>0787</term>
<term>Etude expérimentale</term>
<term>Convertisseur thermophotovoltaïque</term>
<term>Conversion directe énergie</term>
<term>Indium phosphure</term>
<term>Performance</term>
<term>Efficacité quantique</term>
<term>Etude faisabilité</term>
<term>Emissivité</term>
<term>Véhicule spatial</term>
<term>Semiconducteur bande interdite étroite</term>
<term>Structure bande</term>
<term>Evaluation performance</term>
<term>Effet haute température</term>
<term>Recherche spatiale</term>
<term>Indium composé</term>
<term>Phosphore composé</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Véhicule spatial</term>
<term>Recherche spatiale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thermophotovoltaic (TPV) option was not selected for further deep space mission technology development in NASA for several reasons. Chief among them was the large radiator required to keep the photovoltaic cells at a sufficiently low operating temperature. This led to significant integration problems with the spacecraft and limited sensor view angles. It is clear that the issue of cell temperature is crucial for space applications because of radiator size and system impact. Many efforts have focused on matching cell band gap to appropriate emitters in the 1 to 2 μm range, resulting in band gaps in the 0.5 to 0.8 eV range. However, low band gaps lead to low open circuit voltages (∼0.25 to 0.45 V) caused by high intrinsic carrier concentrations (n
<sub>i</sub>
<sup>2</sup>
). Thus, in order to obtain high performance. Photovoltaic cell temperatures must be kept near room temperature. This leads to the inevitable consequence of very large radiators for space applications. Thus in order to make the TPV system suitable for space, this temperature problem must be resolved. However, by turning the problem around and assuming that the system must have an operating temperature in the 150 to 225°C range, new opportunities for solution arise. If one selects a cell with a wider band gap, open circuit voltage will be larger and the temperature coefficient of voltage will generally be somewhat lower percentage wise. Thus voltages higher than typical low band gap cells are possible even at these higher temperatures. In this paper, InP is selected to demonstrate this concept because it is a well-researched cell, it has a direct band gap and its various temperature coefficients are known. Response of InP cell at the temperature range of 28°C to 225°C is investigated under Yb
<sub>2</sub>
O
<sub>3</sub>
emitter illumination. The variation of the open circuit voltage and band gap with temperature are also discussed in the paper. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0094-243X</s0>
</fA01>
<fA02 i1="01">
<s0>APCPCS</s0>
</fA02>
<fA03 i2="1">
<s0>AIP conf. proc.</s0>
</fA03>
<fA05>
<s2>460</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of elevated temperatures on the performance of an InP cell illuminated by a selective emitter</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHEN (Zheng)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRANDHORST (Henry W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Space Power Institute, 231 Leach Center Auburn, Alabama 36849</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>438-445</s1>
</fA20>
<fA21>
<s1>1999-03-10</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21757</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0281852</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>AIP conference proceedings</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The thermophotovoltaic (TPV) option was not selected for further deep space mission technology development in NASA for several reasons. Chief among them was the large radiator required to keep the photovoltaic cells at a sufficiently low operating temperature. This led to significant integration problems with the spacecraft and limited sensor view angles. It is clear that the issue of cell temperature is crucial for space applications because of radiator size and system impact. Many efforts have focused on matching cell band gap to appropriate emitters in the 1 to 2 μm range, resulting in band gaps in the 0.5 to 0.8 eV range. However, low band gaps lead to low open circuit voltages (∼0.25 to 0.45 V) caused by high intrinsic carrier concentrations (n
<sub>i</sub>
<sup>2</sup>
). Thus, in order to obtain high performance. Photovoltaic cell temperatures must be kept near room temperature. This leads to the inevitable consequence of very large radiators for space applications. Thus in order to make the TPV system suitable for space, this temperature problem must be resolved. However, by turning the problem around and assuming that the system must have an operating temperature in the 150 to 225°C range, new opportunities for solution arise. If one selects a cell with a wider band gap, open circuit voltage will be larger and the temperature coefficient of voltage will generally be somewhat lower percentage wise. Thus voltages higher than typical low band gap cells are possible even at these higher temperatures. In this paper, InP is selected to demonstrate this concept because it is a well-researched cell, it has a direct band gap and its various temperature coefficients are known. Response of InP cell at the temperature range of 28°C to 225°C is investigated under Yb
<sub>2</sub>
O
<sub>3</sub>
emitter illumination. The variation of the open circuit voltage and band gap with temperature are also discussed in the paper. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03G</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G87</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8460B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8460J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>0787</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Convertisseur thermophotovoltaïque</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thermophotovoltaic converters</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Conversion directe énergie</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Direct energy conversion</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Performance</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Performance</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Efficacité quantique</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Quantum efficiency</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etude faisabilité</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Feasibility studies</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Emissivité</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Emissivity</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Véhicule spatial</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Space vehicles</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur bande interdite étroite</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Narrow band gap semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure bande</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Band structure</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>thermophotovoltaic cells</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Evaluation performance</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Performance evaluation</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Effet haute température</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>High-temperature effects</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Recherche spatiale</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Space research</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Phosphore composé</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Phosphorus compounds</s0>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9923M000078</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014220 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014220 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0281852
   |texte=   Effect of elevated temperatures on the performance of an InP cell illuminated by a selective emitter
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024